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Abstract 

This work presents a novel approach to sign language translation by integrating 

Electromyography (EMG) signals with Natural Language Processing (NLP) to 

enhance contextual understanding. The primary challenge addressed is the 

communication barrier faced by individuals who are deaf or hard of hearing, 

particularly the limited ability of non-sign language users to comprehend sign 

language. Current systems often require both parties to understand sign language, 

which is not always feasible. The proposed solution involves the development of a 

real-time machine learning model, portable device that translates hand gestures into 

text, thereby facilitating clear communication. The literature survey highlights the 

reliability of EMG-based systems in capturing muscle activity, while also 

acknowledging their limitations, such as signal noise and the need for precise Gesture 

recognition. By incorporating NLP, the system aims to improve the contextual 

accuracy of translations, overcoming the shortcomings of existing gesture recognition 

systems. The expected outcome is a robust assistive communication tool that 

significantly enhances interaction for individuals with communication disorders, 

ultimately contributing to the field of assistive technology. 

Keywords — Sign language translation, Electromyography (EMG), Natural Language 

Processing (NLP), Gesture recognition, Machine learning 

Introduction  

In today's digital age, human-computer interaction (HCI) plays a pivotal role in shaping 

user experiences across various domains, from virtual reality gaming to assistive 

technologies for individuals with disabilities. Traditional input methods such as 

keyboards and mice have limitations in terms of intuitiveness and accessibility. As 

such, there is a growing demand for more natural and immersive interfaces that can 

bridge the gap between humans and machines seamlessly. 
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These gloves are designed to capture intricate hand movements and translate them into 

actionable commands, revolutionizing the way we interact with computers and digital 

environments. 

The objectives for this work is to accurately detect finger movements, map these 

specific movements to corresponding text, and develop a machine learning model 

capable of classifying input gestures with precision. Additionally, the work aims to 

convert the generated text into voice signals to enhance accessibility. The overarching 

goal is to create a portable, cost-effective, and user-friendly system that can perform 

real-time sign language translation, making it both practical and efficient for users who 

need instantaneous communication assistance. 

Literature Review 

Sr. 

No. 

Title Publisher Year Methodology Conclusion 

1 Sign Language 

Interpreter 

Using 

Machine 

Learning 

IEEE 2024 Combined wearable flex sensors 

and a microcontroller to collect 

gesture data; implemented 

supervised machine learning to 

classify gestures into 

corresponding text. 

Showcased the feasibility 

of real-time gesture 

interpretation, improving 

accessibility for 

individuals unfamiliar with 

sign language. 

2 Real-time Sign 

Language 

Recognition 

using Machine 

Learning and 

Neural 

Network 

IEEE 2023 Used neural networks to process 

input signals from multiple 

sensors, including accelerometers 

and gyroscopes, and trained the 

model with labeled gesture data. 

Provided a scalable and 

efficient solution for 

dynamic gesture 

recognition, applicable in 

wearable technology. 

3 Sign Language 

Prediction 

using Machine 

Learning 

Techniques: A 

Review 

IEEE 2023 Surveyed various ML techniques 

such as SVM, decision trees, and 

neural networks, comparing their 

performance in gesture recognition 

across different datasets. 

Identified challenges in 

data availability and 

emphasized the importance 

of robust ML models to 

ensure diverse and 

inclusive recognition 

systems. 

4 Sign Language 

Recognition 

using Deep 

Learning 

IEEE 2024 Developed a deep learning pipeline 

utilizing CNNs to extract spatial 

and temporal features from gesture 

images or signal data 

Improved recognition 

accuracy and robustness, 

demonstrating potential for 

deployment in real-world 

scenarios. 

5 EMG-Based 

Gesture 

Recognition 

for Sign 

IEEE 2022 Collected EMG data using 

wearable sensors; preprocessed 

signals to reduce noise and used 

machine learning for classification 

Established reliable 

methods for using EMG 

signals to classify gestures, 



39 

 

Language 

Interpretation 

suitable for assistive 

technologies. 

6 Accelerometer

-Based 

Gesture 

Classification 

in Wearable 

Devices 

IEEE 2021 Implemented a wearable device 

with sensors mounted on specific 

positions to precisely measure the 

gestures. 

Demonstrated precise 

motion tracking, laying the 

foundation for enhanced 

gesture-based 

communication devices. 

Table 1.1 Review of the previous works 

S. Anthoniraj et al. [1] discussed the ability of EMG signals to capture real-time 

gesture patterns by assessing skeletal muscle activity. In the proposed model, hand 

gesture recognition accuracy was achieved at high levels in real-time applications. 

Signal variability and noise during such applications posed a problem, thereby 

requiring improved signal processing and machine learning techniques to ensure 

higher consistency.  

R. Matlani et al. [2] conducted a study on vision-based systems for sign language 

recognition, based on image recognition techniques for detecting hand and body 

gestures. Though non-invasive, they suffer from several drawbacks, which include 

poor performance in low light conditions, privacy issues, and inability to capture 

minimal movement. The authors suggested the use of EMG-based systems instead. 

D. Aggarwal et al. [3] discussed the portability of EMG-based systems for assistive 

communication devices, demonstrating their effectiveness in capturing sign language 

gestures for daily use. However, the lack of sensor positioning and inconsistency of 

muscle signals restrict their use and there is a need for developing adaptive sensors 

and strong training algorithms. 

D. Kothadiya et al. [4] made use of supervised learning models applied to EMG data 

improve the accuracy of gesture recognition. However, the contextual unawareness 

confines their system to interpreting only complex or nuanced gestures; hence, they 

suggest adding Natural Language Processing to understand the gestures in a wider 

conversational perspective. 

S.K. Singh et al. [5] had focused on EMG-based sign language translation wherein the 

EMG signals are mapped to particular signs. Even though it has demonstrated that 

EMG can be useful in sign language translation, some issues are still encountered, 

such as contextual accuracy and ambiguity resolution. They, too, recommended NLP 

integration to improve the quality of translations. 

Finally, T. Marasović et al. [6] emphasized the importance of contextual awareness in 

improving gesture recognition accuracy. By integrating NLP techniques with EMG 

signals, they proposed a system incorporating context mapping, which significantly 

reduced errors and enhanced performance, particularly during complex conversations. 



40 

 

This integration highlights the potential for creating more accurate and meaningful 

gesture-based communication systems. 

I. Proposed System  
The proposed system consists of four key components: 

1. Gesture Recognition Module  
o Captures real-time hand movements using EMG sensors and 

accelerometers.  
o Maps gestures to individual words using a trained ML model.  

2. Context-Aware Text Generation Module (T5-Base)  
o Takes the predicted words and paraphrases them into coherent and 

grammatically correct sentences.  
o Utilizes a Persistent KV Cache Mechanism to retain context across 

multiple calls.  
3. Persistent KV Cache Mechanism (Proposed Innovation)  

o Stores the transformer’s Key-Value (KV) cache in an external memory 
buffer (RAM or Flash).  

o Updates this cache dynamically to reuse past context for real-time 
sentence formation.  

4. Text-to-Speech (TTS) Conversion Module  
o Converts the final grammatically corrected sentence into speech.  

Methodology 

The proposed system follows a structured pipeline for real-time gesture recognition 

and speech synthesis, integrating hardware-based signal acquisition, machine learning-

driven classification, and natural language processing (NLP) for grammatically correct 

speech output. 

1. Hardware Design and Data Acquisition 
The system is built around a custom-designed wearable device equipped with 
accelerometers and an ESP32 for real-time motion and electromyography (EMG) 
signal acquisition. The device captures: 
o EMG signals (2 channels per hand) 
o Accelerometer data (6 dimensions per hand) 

This results in a 16-dimensional feature space (8 per hand) that is transmitted via a 

wired connection to a Raspberry Pi for further processing. 

2. Data Processing and Preprocessing Pipeline 
     Once received by the Raspberry Pi, the raw data undergoes several preprocessing 

steps: 

o Noise filtering using bandpass filtering to remove unwanted EMG artifacts 
o Normalization & feature scaling to maintain consistency 
o Dimensionality reduction (if needed) to optimize computational efficiency. 
 

3. Gesture Recognition Using Hybrid Machine Learning Model 
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     The processed 16-dimensional data is then fed into a gesture classification model, 

which consists of: 

o Artificial Neural Network (ANN) trained on the 16D feature set for initial 
gesture detection. 

o Ensemble Learning Approach combining ANN with strong classifiers (Random 
Forest, Gradient Boosting, SVM) to enhance accuracy and robustness. 

Once a gesture is detected, it is mapped to its corresponding text representation. 

4. Context-Aware Paraphrasing for Indian Sign Language (ISL) 
Since Indian Sign Language (ISL) sentences often follow a syntactically different 
structure (e.g., "TONIGHT HOME LATE NOT." instead of "Don’t be late coming 
home tonight."), a custom-trained T5 paraphraser is introduced to generate 
grammatically correct text. To maintain linguistic coherence, we implement a 
Persistent Context-Aware KV Cache Mechanism, allowing the paraphraser to 
retain context across multiple text generations: 
 
o Persistent KV Cache for Long-Term Context 
Instead of discarding the KV cache after each generation, past key-value states are 

stored in structured external memory (RAM, NVMe SSD, or Flash storage) for 

retrieval. 

o Modifying the T5 Generation Process 
The generate() function is modified to accept an external past_key_values 

parameter. 

When a new word is detected, the system retrieves previous KV states and injects 

them into the next generate() call, ensuring grammatical and contextual continuity. 

o Efficient KV Storage 
Circular buffer in RAM stores recent KV cache for fast retrieval. 

Periodic Flash memory storage is used for longer retention, ensuring a balance 

between performance and memory constraints. 

o Rolling Context Window 
Instead of indefinitely storing all tokens, a sliding window mechanism keeps only 

N past tokens, dynamically pruning older, irrelevant context to prevent excessive 

memory usage. 

5. Emotion-Aware Speech Synthesis 
      Simultaneously, a sentiment analysis model evaluates the emotional tone of the 

paraphrased sentence. Emotional tagging is applied to different parts of the 

sentence, which then influences the Mini-Parler TTS module to generate human-

like speech with appropriate tone, pitch, and cadence. 

 

6. Real-Time Feedback Loop for Adaptive Learning  
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     To improve accuracy over time, the system incorporates a user feedback 

mechanism, enabling corrections that fine-tune both: 

o The gesture recognition model (retraining with new samples) 
o The paraphraser and speech synthesis module (adjusting linguistic structures 

and sentiment mapping) 
This ensures continuous adaptation and refinement, making the system more 

precise and context-aware over repeated usage. 

 

Fig. 1. Block diagram for gesture interpretation and speech generation 

Implementation 

The implementation of the proposed gesture interpretation system involves a seamless 

integration of hardware and software components, ensuring real-time processing and 

accurate translation of hand gestures into meaningful speech. The system is built on a 

Raspberry Pi platform, where necessary libraries such as Adafruit ADS1x15 for analog 

EMG signal acquisition, MPU6050 for accelerometer data, and TensorFlow Lite for 

efficient machine learning inference are installed.  

The first step is enabling I²C communication, which facilitates data transfer between 

sensors and the microcontroller. The EMG sensor and accelerometer are then 

connected to capture muscle activity and hand movements, respectively. Once the 

sensors are initialized, signal acquisition begins, where raw data undergoes 

preprocessing, including noise filtering using band-pass and low-pass filters and 

normalization for consistency. The preprocessed signals are then segmented using a 

sliding window approach to create manageable data chunks, which are subsequently 

used for feature extraction. 

Feature extraction plays a crucial role in gesture recognition, where time-domain and 

frequency-domain features such as root mean square (RMS), variance, and power 

spectral density are derived from the EMG and accelerometer data. A deep learning 
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model, primarily an artificial neural network (ANN), is trained alongside an ensemble 

classifier, incorporating techniques such as Random Forest, to enhance recognition 

accuracy.  

The classified gestures are then mapped to predefined words and transmitted to the 

next processing stage, where a modified T5-based transformer model performs 

grammar correction. This transformer model receives words sequentially, updates a 

context buffer, and dynamically adjusts sentence structure to maintain grammatical 

coherence and context relevance. The model refines tenses, adds missing words, and 

restructures the sentence based on an autoregressive approach, ensuring a natural flow 

of language. 

Simultaneously, a sentiment analysis module processes the evolving sentence, 

extracting emotional cues using a pre-trained sentiment classifier. This module assigns 

a sentiment score—positive, neutral, or negative—by analyzing embeddings from the 

grammar correction system. The sentiment score is then passed to the text-to-speech 

(TTS) engine, which employs an advanced speech synthesis model such as Tacotron 2 

or FastSpeech to generate emotion-aware speech output. Based on the sentiment score, 

the TTS engine modulates tone, pitch, and speed to reflect the user’s emotional intent, 

ensuring an expressive and natural speech synthesis.  

Finally, the system incorporates a feedback loop, allowing users to validate and refine 

gesture recognition accuracy over time. User-specific gestures are incrementally 

learned, optimizing the model’s adaptability and robustness. This comprehensive 

implementation strategy ensures that the system operates efficiently, providing a real-

time, user-friendly solution for converting hand gestures into grammatically and 

contextually accurate speech. 

4.1 Data Flow and Processing Pipeline  

1. Gesture Prediction → Initial Word Formation  

o The system predicts words from gestures using EMG sensor input and a 

trained classification model.  

2. Context-Aware Paraphrasing (T5 with Persistent KV Cache)  

o The predicted words are tokenized and fed into the T5 model for 

paraphrasing.  

o The model generates grammatically correct text using a stored KV cache 

from previous interactions.  

3. KV Cache Storage and Retrieval  

o The KV cache from previous generate() calls is stored in an external 

buffer.  

o When a new word arrives, the system retrieves and injects stored KV 

pairs into the next generation call.  
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4. Text-to-Speech Conversion  

o The final corrected output is converted into speech using Parler-

TTS/Coqui-TTS.  

4.2 Key Technical Implementations  

Modifying the T5 Generation Process to Accept: 

1. External KV Cache  

o Modify the generate() function to accept an 

external past_key_values parameter.  

o Before running generate(), retrieve stored KV cache from memory and 

inject it into the new input sequence. 

2. Efficient KV Storage Mechanism  

o Implement a circular buffer in RAM to store recent KV cache for fast 

retrieval.  

o For longer retention, periodically store and retrieve KV cache from NVMe 

SSD or Flash memory.  

3. Rolling Context Window  

o Instead of storing all tokens indefinitely, keep a sliding window of past N 

tokens to avoid excessive memory usage.  

o Ensure old, irrelevant context is pruned dynamically.  

4. Optimizing Cache for Low Latency  

o KV cache retrieval should be non-blocking to maintain real-time 

processing speed. Using CUDA pinned memory for fast GPU access 

reduces overhead.  

Results and Analysis  

Feature Our Product (EMG+Accelerometer) SignaLoud (Glove-Based) 

Sensor Technology Uses EMG sensors to capture muscle 

activity and MPU6050 accelerometers for 

motion tracking 

Uses flex sensors for finger bending 

and IMUs for motion detection 

Wearable Form Factor Fabric-based bands with Velcro straps for 

easy attachment on forearm 

Gloves that cover the entire hand, 

possibly restricting natural 

movement 

Communication 

Medium 

Uses ESP32 & Raspberry Pi wired 

communication like I2C 

Uses Bluetooth to transmit data to a 

smartphone 

Data Processing Uses Machine Learning (ML) model to Uses predefined sign-to-text 
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predict gestures conversion 

Context Understanding Supports NLP-based translation for better 

context recognition 

No NLP integration, works with a 

predefined sign-to-speech mapping 

Accuracy Higher accuracy due to muscle activation 

+ movement tracking 

Lower accuracy as flex sensors only 

detect finger bending 

Language Flexibility Can be customized for different sign 

languages & dialects 

Limited to predefined sign language 

database 

Application Scope

  

Can be used for assistive communication, 

prosthetics, and smart wearables 

Mainly for basic sign-to-text 

conversion 

Latency in Data 

Transmission 

High speed compared to Bluetooth and 

minimum data loss 

Higher latency as Bluetooth 

communication relies on external 

devices 

Power Efficiency Optimized power consumption with 

Raspberry Pi and ESP32 sleep modes 

Consumes more power due to 

continuous Bluetooth transmission 

User Comfort  Lightweight & flexible, does not restrict 

hand movements 

Can be restrictive, especially during 

prolonged use 

 

Fig. 2. T5 Model Paraphrasing Output   Grammar correction and paraphrasing: 
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1. A transformer model (humarin / chatgpt_paraphraser_on_T5_base) was chosen 

because of its fast sequence to sequence transfer with contextual understanding, 

making it reliable for emotion matching required for speech generation. 

2. Below are some demo results, not much refined, as the data is going to be huge. 

3. You can see that the above model, helps adding helping verbs and paraphrases 

the input text. 

ANN: 

A deep neural network was trained with some hyperparameter tuning namely SGD, 

RMSProp, Adam as optimizer, etcetera. 

 

Fig. 3.  ANN model summary of parameters 

 

The Image below represents the accuracy and loss of Training and Validation data, 

which resulted in 

 

Fig. 4. Training (28.76%) & validation loss (37.28%) 
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Fig. 6.3.4 Training (90.4%) & validation accuracy (88.94%) 

Conclusion  

Communication between sign language users and nonusers is greatly improved by the 

Sign Language Interpreter system, which offers an efficient way to convert sign 

language motions into text. This system achieves high precision in gesture 

identification by precisely capturing and interpreting hand gestures using EMG signals. 

Context aware translations, made possible by the incorporation of Natural Language 

Processing (NLP), produce output that is both correct and pertinent to the 

conversational context. The system is a useful, accessible tool that lowers 

communication barriers and promotes inclusion for people with speech and hearing 

impairments because of its real-time processing and user-        friendly design. This 

research proposes a Persistent KV Cache Mechanism for real-time gesture-to-speech 

conversion, allowing context-aware text generation using the T5 model. By retaining 

past context across multiple generate() calls, the system ensures grammatical 

correctness and fluency in generated speech.  

Future work includes:  

1. Exploring Retrieval-Augmented Generation (RAG) to dynamically fetch 
contextual information.  

2. Optimizing cache storage for minimal latency with hardware acceleration.  
3. Evaluating on different transformer architectures like GPT-based models.  
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